메뉴 닫기

태양에 대해서 알아보자!!

(太陽)은 태양계 중심에 있으며 지구에서 가장 가까운 항성이다. 본래 한국어로 라고 하며, 태양이란 한자어는 음양(陰陽: “물과 불”, “그늘과 볕”, “차가움과 뜨거움” 등)가운데 가장 큰(太) 양(陽)이라는 뜻이다. 지구를 비롯한 태양계 여러 행성과 소행성유성혜성 등의 천체가 태양을 중심으로 돌고 있다. 지구는 태양을 일정한 궤도로 공전하고 있으며, 그렇기 때문에 지구에서 바라보는 태양은 연중 일정한 궤도를 운행하는 것처럼 보인다. 이 궤도를 황도라 한다. 지구는 태양을 공전하는 것 외에도 스스로 24시간에 1회 서에서 동으로 자전하기 때문에, 지구 표면에서 관측자 눈에는 태양이 동쪽 지평선에서 떠올라 일정 시간 동안 하늘을 서쪽으로 횡단한 뒤 서쪽 지평선 아래로 지는 것처럼 보인다[1].

태양의 수명은 약 123억 6500만년이고 핵우주 연대학에 따르면 45억 6720만년 전에 형성되었다. 분광형은 G2V이며 비공식적으로 “노란색 별”로 불리는데, 그 이유는 태양이 지구에서 황색으로 보이기 때문이다. 실제로는 가시광 복사가 스펙트럼상 초록 부분에서 가장 강렬하다.[2]. 다만 실제로 우주에서 보면 태양은 g형 주계열성이므로 흰색으로 보인다. 이 분광형 표시에 있어서 G2는 태양 표면의 유효 온도가 약 5,778K켈빈임을, V는 우주의 다른 대다수 별과 마찬가지로 태양이 원자 핵융합을 통해 에너지를 생산하는 주계열성임을 뜻한다. 태양은 중심핵에서 초당 4억 3천만~6억 톤의 수소를 태운다. 태양은 천문학자들에게 있어 한때는 작고 상대적으로 눈에 띄지 않는 별이었으나 이제는 우리 은하 별들 중에서 밝은 축에 드는 존재로 인정되고 있다. 우리 은하 별 대부분(90퍼센트)은 작고 어두운 적색 왜성이다[3][4]. 이들은 아무리 밝아도 태양 밝기 10%에 불과한다. 태양의 지름은 약 139만 2천 킬로미터로 지구보다 109배 크며, 질량은 2×1030 킬로그램으로 지구보다 약 33만 배 무거워 태양계 전체 질량의 약 99.86%를 차지한다[5]. 태양 질량 약 4분의 3은 수소, 나머지 4분의 1은 대부분 헬륨이다. 총질량 2퍼센트 미만이 산소탄소네온 같은 무거운 원소들로 이루어져 있다[6]. 태양의 뜨거운 코로나는 우주 공간으로 연속적으로 뻗어 있으며, 여기에서 대략 100천문 단위 거리 태양 권계면까지 뻗어 있는, 대전(帶電)된 입자의 흐름인 태양풍이 만들어진다. 태양풍이 만들어 낸 성간 매질 속 거품 구조인 태양권은 태양계 내에서 가장 거대한 구조이다[7][8]. 태양은 백색광을 내지만 지구 표면에서 볼 때 파란색 빛이 일으키는 대기 산란 때문에 노란색으로 보일 수 있다[9]. 태양은 지구와 대략 1억 4960만 킬로미터(1천문단위) 떨어져 있으나, 정확히는 매년 1월 근일점에서 가장 가까워지고 7월 원일점에서 가장 멀어진다[10]이 태양을 출발하여 이 거리를 지나 지구까지 오는 데에는 약 8분 19초가 걸린다. 태양의 절대 등급은 +4.83이나 지구에서 가깝기 때문에 겉보기 등급은 -26.74로 아주 밝게 보인다[11][12].

태양은 우리 은하 중심을 약 24,000~26,000광년 거리에 두고, 은하계 북극 방향에서 볼 때 시계 방향으로 약 2억 2천 5백만~2억 5천만 년에 1회 돌고 있다. 우리 은하가 우주 배경 복사(CMB)에 대하여 물뱀자리 방향으로 초당 550킬로미터 속도로 움직이고 있기 때문에, 태양의 우주 배경 복사에 대한 종국적 속도는 컵자리 또는 사자자리 방향으로 초당 370킬로미터가 된다[13]. 태양은 현재 우리 은하 오리온 팔의 안쪽 경계 내 국부 거품 영역의 국부 항성간 구름 속을 여행하고 있다. 태양에서 17광년 이내 가까운 별 50개 중 4.2 광년 떨어진 센타우루스자리 프록시마가 제일 가까운 이웃 항성이다) 태양은 네 번째로 무거운 별이다[14].

지구에 도착한 햇빛 에너지는 식물의 광합성을 일으켜 거의 모든 지구상 생명체의 생존을 가능하게 하며[15] 지구의 날씨 및 기후를 만든다. 인류는 선사 시대 이래로 태양이 지구에 미치는 막대한 영향 및 중요성을 알고 있었으며 일부 문화권에서는 태양을 으로 숭배하기도 했다. 태양에 대한 정확한 과학적 지식의 발달 속도는 느렸으며 19세기까지도 천문학자들은 태양의 물리적 조성 및 에너지 원천에 아는 것이 별로 없었다. 현대에도 태양에 대해 모든 것이 밝혀진 것은 아니며 태양의 불규칙한 활동이 일어나는 원인은 아직까지 명확히 밝혀지지 않고 있다.

1.특성

태양의 표면은 대부분 수소(전체 질량의 약 74%, 전체 부피의 92%)와 헬륨(약 24~25%의 질량, 7%의 부피)[16], 그밖에 을 비롯한 니켈산소규소마그네슘탄소네온칼슘,베릴륨크로뮴 등[17] 으로 구성되어 있다.

태양은 태양계 총질량 99.8632%를 차지하는 G형 주계열성으로 분광형은 G2V이다. ‘G2’는 표면 온도가 약 5,860 K으로 맨눈에 보이는 태양은 흰색을 띠게 된다. 그러나 태양빛이 대기를 지나면서 산란되어 노란색으로 보일 때가 있다. 이는 청색 광자가 선택적 산란으로 흩어지면서(하늘이 푸른 것은 이 때문이다.) 남은 적색을 상쇄시키지 못하기 때문이다. 이 때문에 태양이 낮게 떠 있을 때에는, 주황색이나 적(赤)색을 띠기도 한다.

편평도는 약 900만 분의 1이고[18] 이는 태양의 양극간 지름과 적도 지름이 불과 10킬로미터밖에 차이나지 않음을 뜻한다. 태양은 플라스마가 뭉친 상태로 존재하며 딱딱한 고체가 아니다. 태양은 극보다 적도에서 더 빠르게 자전한다. 이를 차등 회전으로 부르며 태양 내부 대류 및 질량 이동의 원인이 된다(태양 중심부에서 외곽부로 나가면서 급격한 온도 그래디언트를 보여주기 때문이기도 하다). 이 질량은 태양 북극 방향에서 볼 때 태양의 시계 반대방향 각운동량 일부를 옮겨 각운동량을 재배분한다. 이 ‘실제 자전’ 주기는 적도에서 약 25.6일, 극에서 약 33.5일이다. 그러나 지구가 태양을 돌면서 우리가 태양을 바라보는 위치는 변하기 때문에 적도상에서 우리 눈에 보이는 ‘겉보기 자전’ 주기는 약 28일이다.[19] 이처럼 느린 자전에서 나오는 원심력 효과는 태양 적도상 표면 중력 18분의 1에 지나지 않는다. 행성의 조석 효과는 더 약하여 태양 겉모양에 별다른 영향을 미치지 못한다.[20]

태양은 항성종족 I에 속하며 중원소가 풍부한 별이다. 천문학 분야에서 ‘중원소’ 혹은 ‘금속’은 수소와 헬륨보다 무거운 모든 원소를 부르는 말이다.[21] 가까운 곳에서 발생한 하나 혹은 그 이상의 초신성 폭발로 태양의 탄생 과정이 발동되었다고 추측된다.[22] 이는 태양계에 이나 우라늄과 같은 중원소가 소위 항성종족 II 별들에 비해 풍부하게 존재함을 통해 알 수 있다. 이 원소들은 대부분 초신성 단계에서 에너지 흡수성 핵반응이 일어나 만들어졌거나, 질량 큰 2세대 별 내부에서 중성자 흡수를 통한 핵변환으로 생겨났을 것이다.[21]

태양은 암석 행성들과는 달리 명확한 바깥 경계가 없고 태양의 가스층 밀도는 중심부에서 멀어질수록 기하급수적으로 낮아진다.[23] 그럼에도 불구하고 태양 내부는 그 성질이 명백히 구별되는 층으로 나뉘어 있다. 태양 반지름은 중심부에서 광구 바깥면까지 측정한다. 광구 최외곽층은 단순히 말하자면 가스 온도가 낮아 막대한 양의 빛을 복사할 수 없는 곳이다. 따라서 태양 표면은 맨눈으로 보이는 곳까지 말한다.[24]

태양 내부를 눈으로 직접 볼 수는 없으며 태양 자체도 전자기 복사에 대해서 불투명하다. 그러나 지진학에서 지구 내부 구조를 밝히기 위해 지진이 만든 파장을 이용하는 것과 마찬가지로, 성진학에서는 태양 내부를 관통하는 초저주파음을 이용하여 태양 내부 구조를 분석하고 시각화한다.[25] 태양 깊은 내부를 연구할 목적으로 컴퓨터 모델링을 이론적 도구로 사용하기도 한다

2.핵

태양핵은 태양 반지름 중 중심에서 약 20 ~ 25 퍼센트 거리의 영역이다.[26] 중심부의 밀도는 의 150배이며[27][28] 온도는 13,600,000K이다(반면 태양 표면은 약 5,800켈빈 수준이다). 최근 SOHO의 분석에 따르면 중심핵 부분은 그 위 복사층보다 빠르게 자전하고 있다고 한다.[26] 태양은 일생 대부분의 기간동안 양성자-양성자 연쇄 반응이라는 이름의 핵융합으로 에너지를 만든다. 이 과정을 통해 수소는 헬륨으로 변환된다.[29] 태양 내부에서 생산된 헬륨 중 2퍼센트 미만은 CNO 순환을 통해 만들어진다.

중심핵은 핵융합을 통해 감지 가능한 수준의 열을 만드는 유일한 장소이다. 태양 중심에서 반지름 24퍼센트 지점까지 태양 에너지의 99퍼센트가 생산되고 반지름 30퍼센트 지점에서 융합 작용은 거의 멈춘다. 30퍼센트부터 최외곽까지 나머지 부분은 중심핵과 핵 바로 바깥 층에서 바깥으로 전달되는 에너지로 가열된다. 핵에서 융합을 통해 만들어진 에너지는 층 여러개를 통과한 뒤 광구에 도착하고, 햇빛 또는 입자들의 운동 에너지 형태로 우주로 달아난다.[30][31]

양성자-양성자 연쇄 반응은 태양 중심핵에서 매초 약 9.2×1037회 일어난다. 이 반응은 양성자 4개(수소 원자핵)를 사용하기 때문에, 매초 3.7×1038개 또는 약 5.945×1011kg의 양성자를 알파 입자(헬륨 원자핵)로 바꾼다.(태양에 있는 자유 양성자의 총량은 ~8.9×1056개이다)[31] 수소를 헬륨으로 융합하면서 0.7퍼센트의 융합된 질량을 에너지로 방출하므로,[32] 태양은 초당 426만 메트릭 톤의 질량-에너지 전환율로 에너지를 방출하는데, 이는 384.6요타와트 또는 초당 9.192×1010메가톤 TNT에 해당하는 위력이다. 이 질량은 에너지를 만들어내면서 소멸하지는 않으며 대신 복사 에너지 형태로 전환된다(이는 물질과 에너지의 등가 원리 개념에 따른 결과이다).

중심핵에서 융합을 통해 생산되는 단위시간당 에너지 생산량은 태양 중심부에서 떨어진 거리에 따라 다양하다. 모형을 이용하여 측정한 태양 중심부에서 융합되는 힘은 약 276.5와트/m3로,[33] 이는 원자폭탄보다는 도마뱀의 신진대사량에 보다 걸맞은 일률이다.[34] 태양이 막대한 에너지를 생산하는 이유는 단위 부피당 일률이 높아서가 아니라 태양 자체가 엄청나게 크기 때문이다.

중심핵에서의 융합 속도는 ‘자기 수정적 균형 상태’에 있다. 융합 속도가 약간 빨라지면 중심핵은 더 뜨겁게 가열되며 중심핵 위층의 무게에 거슬러 근소하게 팽창하고, 융합 속도는 감소하며 섭동 상태는 원래대로 복구된다. 융합 속도가 조금 줄어들면 중심핵은 차가워지면서 조금 쭈그러들고, 융합 속도는 상승하면서 원래 상태로 복귀한다.[35][36]

융합 작용으로 풀려나온 감마선(고에너지 양성자)은 수 밀리미터밖에 되지 않는 태양 플라스마에 흡수되었다가 일정치 않은 방향으로 재방출된다(이 때 감마선의 에너지는 흡수되기 전보다 약간 줄어든다). 따라서 감마선이 태양 표면까지 닿는 데에는 오랜 시간이 걸린다. 이 ‘양성자의 여행 시간’은 약 1만 ~ 1만 7천 년이다.[37]

대류권 바깥층부터 투명한 광구 ‘표면’까지 마지막 여행을 한 후 광자는 가시광선 형태로 태양을 탈출한다. 태양핵에 있는 감마선 하나는 우주로 탈출하기 직전에 수백만 가시광선 형태의 광자로 바뀐다. 중성미자들도 핵에서 일어난 융합작용으로 방출되나 광자와는 달리 중성미자들은 물질과 거의 상호 반응하지 않아 태양을 즉시 떠날 수 있다. 오랜 기간 동안 태양에서 만들어진 중성미자의 개수는 예상치 1천 분의 1에 불과했다. 최근 중성미자 진동 효과를 발견함으로써 이 불일치에 대한 의문이 해결되었다. 태양은 이론상 예측된 양과 같은 중성미자를 방출하나 중성미자 감지기들이 방출량의 2/3를 놓쳤으며 이는 중성미자들이 맛깔을 바꾸어 놓았기 때문이다.[38]

3.복사층

태양 반지름 0.25 ~ 0.7배에 해당되는 층에서 태양 내부 물질은 뜨겁고 농밀해지고, 중심핵의 뜨거운 열을 바깥으로 전달하는 열복사가 일어나기에 충분한 환경이 된다.[39] 이 층에서는 열적 대류는 전혀 일어나지 않는 반면 내부 물질은 위층으로 올라갈수록 냉각된다(700만 켈빈에서 200만 켈빈까지 떨어진다). 이 온도 그래디언트는 단열감률(斷熱減率) 값보다는 작기 때문에 대류 원인이 되지는 않는다.[28]열은 복사를 통해 이동한다. 수소와 헬륨 이온은 광자를 방출하는데 이는 매우 짧은 거리를 여행한 뒤 다른 이온에 재흡수된다.[39] 복사층 하단에서 최상층으로 올라가면서 밀도는 백분의 일(20 g/cm3에서 0.2 g/cm3)로 떨어진다.[39]

4.대류층

표면에서 20만 킬로미터 깊이(혹은 태양 반지름 70퍼센트 지점)에 이르는 태양 바깥층에서 태양 플라스마는 밀도가 낮아지고 온도가 내려가 내부 열에너지를 복사를 통해 밖으로 전달하지 못하게 된다(이를 ‘충분히 불투명하다’라고 표현하기도 한다). 그 결과 상승류가 뜨거운 물질을 태양의 표면(광구)까지 올려보내는 열적 대류가 발생한다. 이동한 물질이 표면에서 식으면 물질은 대류층 바닥으로 가라앉고, 복사층 상층부에서 열을 공급받는다. 눈에 보이는 태양 표면에서 물질 온도는 5700켈빈까지 떨어지며 밀도는 0.2 g/m3에 불과하다(이는 지구 해수면상 공기 밀도 1만 분의 1에 불과한 값이다).[28]

대류층에서 일어나는 상승류는 태양 표면에 쌀알 무늬 및 초대형 쌀알 무늬를 형성한다. 태양 내부 중 바깥 층에서 일어나는 이 격렬한 대류 활동으로 ‘작은 규모의’ 다이너모가 생겨난다. 이 다이너모는 태양 표면 전역에 걸쳐 자기 북극 및 자기 남극을 형성한다.[28] 태양의 열적 상승류는 베나르 셀의 원리를 보여주며 그 결과 육각기둥 모양을 형성하게 된다.[41]

5.광구

광구는 우리 눈이 보지 못하는 태양 표면으로, 태양이 가시광선에 대해 불투명해지는 층 아래 부분에 해당된다.[42] 광구보다 고도가 높은 곳에서 가시광선은 우주로 자유롭게 뻗어 나가며 가시광 에너지는 태양을 완전히 탈출한다. 불투명도가 변하는 이유는 가시광선을 쉽게 흡수하는 H 이온의 양이 줄어들기 때문이다.[42] 반대로 우리 눈에 보이는 가시광은 전자가 수소 원자와 반응하여 H 이온을 만들어 낸 결과이다.[43][44] 광구의 깊이는 수십 ~ 수백 킬로미터로 지구상 공기보다 약간 더 불투명하다. 광구 상층부는 하단보다 온도가 낮기 때문에 태양 그림에서 원반 중심부보다 가장자리(테두리)가 더 어두워 보이는데 이를 주연 감광이라고 부른다.[42] 태양광은 온도 6000켈빈인 흑체와 거의 비슷한 스펙트럼을 보여주는데, 스펙트럼상에는 광구 위 얇은 대기층에서 분산되어 나온 원자 흡수선들이 나타난다. 광구의 입자밀도는 ~1023m−3으로, 이는 지구 대기 해수면상 입자밀도의 1퍼센트 정도다)[39]

광 스펙트럼 연구 태동기 때만 해도 일부 흡수선들은 그때까지 과학자들이 알고 있던 그 어떤 지구상 원소와도 일치하지 않았다. 1868년 노먼 로키어는 이 흡수선들이 있는 이유가 새로운 원소 때문이라는 가설을 세웠고, 이 원소에 그리스 신화 헬리오스 이름을 본따 ‘헬륨’이라는 이름을 붙였다. 그러나 25년 뒤 헬륨은 지구상에 존재하는 물질로 드러났다.[45]

6.

태양 광구보다 높은 고도 전체를 통틀어 ‘태양 대기’라고 부른다.[42] 태양 대기는 전파에서 가시광선, 감마선까지 전자기 스펙트럼 전역을 통한 관측이 가능한 망원경으로 볼 수 있다. 태양 대기는 크게 ‘극저온층’, 채층천이영역코로나태양권의 다섯 부분으로 구별된다.[42] 태양의 희박한 외곽 대기로 알려진 태양권은 명왕성 궤도 너머 태양권계면까지 뻗어 있으며, 태양권계면에서 태양권은 성간 매질에 대해 뚜렷한 충격파 경계를 형성한다. 채층, 천이영역, 코로나는 태양 표면보다 훨씬 뜨거운데,[42] 그 이유는 완전히 밝혀지지는 않았으나 알페인파가 코로나를 이처럼 뜨겁게 가열시키기에 충분한 에너지를 가지고 있음이 증거를 통해 드러났다.[46]

댓글 남기기

이메일은 공개되지 않습니다.